منابع مشابه
Embedded diagonally implicit Runge-Kutta-Nystrom 4(3) pair for solving special second-order IVPs
Abstract In this paper, third-order 3-stage diagonally implicit Runge–Kutta–Nystrom method embedded in fourthorder 4-stage for solving special second-order initial value problems is constructed. The method has the property of minimized local truncation error as well as the last row of the coefficient matrix is equal to the vector output. The stability of the method is investigated and a standar...
متن کاملRunge - Kutta Methods page RK 1 Runge - Kutta Methods
Literature For a great deal of information on Runge-Kutta methods consult J.C. Butcher, Numerical Methods for Ordinary Differential Equations, second edition, Wiley and Sons, 2008, ISBN 9780470723357. That book also has a good introduction to linear multistep methods. In these notes we refer to this books simply as Butcher. The notes were written independently of the book which accounts for som...
متن کاملAccelerated Runge-Kutta Methods
Standard Runge-Kutta methods are explicit, one-step, and generally constant step-size numerical integrators for the solution of initial value problems. Such integration schemes of orders 3, 4, and 5 require 3, 4, and 6 function evaluations per time step of integration, respectively. In this paper, we propose a set of simple, explicit, and constant step-size Accerelated-Runge-Kutta methods that ...
متن کاملOptimum Runge-Kutta Methods
The optimum Runge-Kutta method of a particular order is the one whose truncation error is a minimum. Various measures of the size of the truncation error are considered. The optimum method is practically independent of the measure being used. Moreover, among methods of the same order which one might consider using the difference in size of the estimated error is not more than a factor of 2 or 3...
متن کاملRegular Runge-Kutta pairs
Time-stepping methods that guarantee to avoid spurious fixed points are said to be regular. For fixed stepsize Runge-Kutta formulas, this concept has been well studied. Here, the theory of regularity is extended to the case of embedded Runge-Kutta pairs used in variable stepsize mode with local error control. First, the limiting case of a zero error tolerance is considered. A recursive regulari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1987
ISSN: 0898-1221
DOI: 10.1016/0898-1221(87)90066-6